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ABSTRACT 

Each separable Banach space has an equivalent norm whose only isometrics are 
--- identity. An equivalent norm on a non-separable Hilbert space is constructed 
so that its only isometrics are --- identity. 

A Banach space is said to have trivial isometries if the only isometries are --_ 

identity. (Hence we are considering Banach spaces over the Reals.) We have two 

results about such Banach spaces. Theorem 1 says each separable Banach space 

has an equivalent norm with only trivial isometries. Theorem 2 constructs an 

equivalent norm on a non-separable Hilbert space with only trivial isometrics. 

Davis [3] has the earliest result in this area. Davis renorms 12 so that it has only 

trivial isometrics. His construction is more general, but it isn't known if his 

construction could yield Theorem 1. Davis also describes Pelcynski's C ( K )  space 

with trivial isometrics. Other results may be found in [1], [2]. 

Our construction is based on "pimples", a way of decreasing the norm so that 

the unit ball has two "cones" added. The Proposition in Section 1 contains most 

of the technical details. Although the proof seems long winded, geometrically 

the statment of Proposition is clear. 

§0. Preliminaries 

Our notation is standard and generally follows [6]. We call a vector x extreme 

if it is an extreme point of the ball of radius IIx II. The consequence that 0 

becomes an extreme point is unimportant. 

We need the concept of local uniform convexity (LUR) [4, p. 145]. For x in the 

unit sphere of U" I1 and e < 0, define 

8(x, e ) =  inf{1- U(x + y)/2ll: Ilyl[ = 1, IIx - yU --> e}, and 

a(x, ~) = sup{ll(x + y)/21t: Ily II-- 1, IIx- yll-  -> ,}. 
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We will say I1"11 is L U R  at x, if for each 0 <  e _-<2, ~ ( x , e ) > 0  or equivalently 

A (x, e) < 1. A norm is L U R  if for each unit vector x it is L U R  at x. It is known 

[4, p. 160] that each separable (even WCG) space has an equivalent L U R  norm. 

For those that find Day [4] terse an alternate reference is Diestel [5]. 

§1. Pimples 

Webster 's  seventh new collegiate dictionary defines a pimple as either a small 

inflamed elevation of the skin or a swelling or protuberance like a pimple. Our 

definition of a pimple is a new equivalent norm whose unit ball is the old unit ball 

with two small cones added. The new unit ball can be thought of as the 

convexification of the union of the old unit ball with the line segment between x 

and - x, where x isn't in the old ball. The important parameter of a pimple is the 

possible lengths of maximal line segments in the unit sphere with one endpoint at 

X. 

More formally, if II "11 is a norm on X, xoE X with Ilxoll-- 1 and for 0 <  A < 1, 

then define for y ~ X 

n y ] =  { l a l A  i f y = a x o ,  

It y II otherwise. 

Of course [[. ] isn't a norm, we convexify it in the usual manner; namely, 

[[Yl IA=inf{~Y,~:  Y = ~ Y , } .  

For 0 < A < 1, we will call II. I1~ the A-pimple at Xo. Let x~ = A-~Xo. 

The unit sphere of I1" tt~, s = {y: II y I1~ -- 1~, will contain line segments, that is, 

there are points y, z E S, so that II ty + ( 1 -  t)z I1~ = 1 for each 0<=t<= 1. The 

points y and z are said to be endpoints of a maximal line segment in the unit 

sphere of I1" I1~, if 

L = {ty + ( 1 -  t)z: 0<= t<- <_ 1}C S 

and if L C L'  = {su + (1 - s)v: 0 <= t <= 1} C S then L = L'.  Roughly speaking the 

new "cones",  {x: IIx I1~ = 1 < II x IlL are unions of maximal line segments in S with 
one endpoint at x, or - x , .  

PROPOSITION. Let (X, II "11) be a Banach space and let IlXoll = 1 so that 
(1) I1" II is L U R  at go, and 
(2) there is e > 0 so that if II y II = 1 ancl II Xo- y II < e, then y is an extreme point. 
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Then given 8, B > 0  and 0 <  m < 1, there is a Ao with 0 <  Ao< 1 so that if 

Ao < A < 1 and ]1" I1~ is the A-pimple at xo, then 

(3) m II. II -< II. II~ = II. II, 
(4) if 1 =[[yl[>[[y[[~, then one of [1-+ Xo- y[[< 8, 
(5) x~ = h-lXo is the only isolated extreme point of [[. [[~ which satisfies 

II x/11 x II- xoU < e, 
(6) if w is a vector so that x~ and x~ + w are endpoints of a maximal line segment 

in the unit sphere of [[" [[~, then B >-[[ w [[ => A-~-  1. 

PROOF. Since h [I y [[ < [h ] _-< [[ y [[, condition (3) is true whenever m < ho. The 
rest of the conclusions are not as easy. We start by observing 

(A) [[y[[~ = min{[[y-  axon+[a [A:  a E R}. 
Since the right hand side of (A) is a continuous function of a, it suffices to show 
(A) with "min"  replaced by "inf". Now for a ~ R ,  [[y[IA < 
~y - a x o ] + ~ a x o ]  <- [[y - axo[[+ [a IX, and we need  only check that the left hand 
side of (A) is greater than or equal to the right hand side. So if y = E yi, then 
y = E asxo + E zk where we have divided the yi's into those in span (Xo) and all 
others. Since 

~[[a,xo]= ~ [as[~Xo] > [ ~ aj][[Xo]= ] ~  aj] A and ~ z ~ =  ~ , , z ~ , , o l l ~  4 

the proof of (A) is complete.  

Next, for each y # -+ xx with 1 = II y II~ < II y II we pick zy so that II zy II~ = II z, II = 
1 and 

(B) y = ( 1 - [ a ] A ) z y + l a l A ( + - x ~ )  
(the choice of - x~ depending on if a > 0 or a < 0). Indeed, from (A) we obtain 
an a so that 

(c )  1 = II y - ax01l + I n  I A. 
Now a i 0  since l < l l y l [  and if [ [ y - a x o l l = 0 ,  then y = ---x~. Otherwise, let 

z~ = (y - axo)/ll y - axoll .  Since (3)implies II y - axoll~ ~ II y - axoll, the min in (A) 
requires IIz, I1~--II z~ II--1. Finally equation (B) follows as a rewrite of the 
equation y = y - ago + ago, since (C) implies II y - axoll = 1 - [a [A. Clearly (B) 
states that y isn't an extreme point. Also it follows that x~ is isolated from any 

other extreme point of 1[. II~. Later we will show xx is itself extreme. 
For the rest of the proof we will assume that a > 0. (If a < 0 we can replace x~ 

by -x~. )  Consider the line segment with endpoints zy and xA. The triangle 

inequality implies II tz~ + (1 - t)xA I1~ --- 1 for 0 -_< t =< 1. Since y is another point on 
this line segment with II y I1~ = x and x~ ~ y ~ zy, we actually have 

(D) [1 tzy + (1 - t)x~ I[x = 1 for 0 _--< t < 1. 
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Indeed if ]1 w [IA < 1 for some point w on this line segment, then for either u = zy 

or xA we can write y = sw + (1 - s)u  and hence 

IlY II~ -<- s II w I1~ + ( 1 -  s)llull~ < s + ( 1 -  s ) =  1. 

This contradition shows (D) is true. 

We need some estimates. If IlYll = 1 and [ l y - x o l l < l - X ,  then IlYll~--< 

II y - Xoll + )t < 1 - ) t  ÷ )t = 1 and hence II y I1~ < II y II. In particular, IIz, - xoll-> 
1 - )t. Also since II x~ II = )t- '  and xA = xA - z, + z, we have U z, - x~ I1->-- 
II x~ 11- II z, II and 

(E) IIz , -  x, ll_->)t-'- 1. 
If l] Y 11~ = 1 < II Y II, then 

(~) Ily/Uy II- xoll--< max{ll z, - xo l l , ) t - ' -  1}. 
Indeed y/ll y II is inside the triangle with vertices xo, x~ and z,, hence 

y/llyll-xo=s(zy-xo)+t(x~-xo), for some s, t ->0 with s + / Z  1. 

Also 

(O) Ilzy- x~ II----II z , -  xoll+ ) t - ' -  1. 
Consider t = (1 + )t)-I and let w = tz, + txo = tzy + (1 - t)x~. We have II w I1~ -- 

1 so that 1 =< II w II-<- 2t ~ )t-1 and hence 

(H) (1 + )t)/2 <- U(z, + xo)/2 II - U w/2t II ~ (1 + )t)/2)t. 
We have already required m -<_ )to < 1. So let e > 0 be as in (2), 6 > 0 as in (4) 

and let ~ = min(e, 8, B/2) .  

Since by (1), II. U is LUR at Xo, let )t (Xo, e ) < 1 be as given in Section 0. If k,o is 

close enough to one so that 

(J) Xo ~ - l < ~ a n d  

(K) (1 + )to)/2 > A (Xo, f) ,  
thetl for 1>  A->_)to and any y with Ilyll= 1 and I ly-Xoll-  >- # we have 

U(y + xo)/211 < (1 + x)/2. Since by (H), zy fails this inequality, it follows that 

( t )  ~ > II xo - z, II. 
Thus by (E) and (F), if II Y I1~ ~ II Y II, then II Y/II Y II- Xoll < 8, ~, which proves part (4) 
of the proposition. Furthermore, using (E), (G), (L) and then (J) we have 

( M ) ) t - l - l < l l z , - x ~ l l < - ( : , ÷ ) t - ' - l < 2 ( ; < B .  

This shows the estimate in (6) is satisfied with w = z r - x~. Later we will show 

these are the only w's with x~ and xA + w endpoints of a maximal line segment in 

the unit sphere of I1" I1~. 
Now for extreme points. We have shown xA is isolated from the other extreme 

points of II-II,. To see x~ itself is extreme, suppose it isn't. Then xA = (u + v)/2, 

u ~ v and l] u IIA = t1 v II, = I. Extend the function y ~ z, defined for 1 = II Y IIA < 
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II Y II and y ~ ± x~, by letting zy = y if II Y II--II y I1~ - 1. It follows that x~ is a 
convex combination of zu and z~. But this is impossible since I] xA II = A -1 > 1 and 

both II zu II--II zo II--- 1. Thus x~ is an isolated extreme point. 

Next  suppose  IlYll= IlYll~ -- 1 and IlY - xo l l<  ~ so that y is an extreme point 

II'll by (2). We will show y is an extreme point of I1"11~. Suppose y isn't an 

extreme of I1" I1~, so there are u ~ v, II u I1~ = II v I1~ -- I with y = (u + v)/2. We can't 

have both Ilull= 1 =llvll since y is extreme in [I'll. Now by (B), y is a convex 

combination of zu, z~ and x~. In particular, there is a w # y which is a convex 

combination of z, and zv and so that y is a convex combination of w and xx. 

Now II w I1~ --< I1 w II --< 1, since w is a convex combination of zu and zv. Since 

II Y I1~ -- x and y is a convex combination of w and x~, it follows that II w I1~ --- 
Ilwll = 1. Now for similar reasons for each 0=<t_- < 1, x ( t ) =  ty + ( 1 - t ) w  also 

satisfies Ilx(t)ll~ = IIx(t)ll = 1. But this implies that x(t)is not an extreme point of 

I1"11 for t > 0  as required by (2). 

In summary, we have shown that if II y II-- 1 and II Xo- y II < ~ then y/ll y I1 is an 
extreme point of IJ'll, if and only if y = xA or Ilyll~ = I lyl l - I t  follows that 

y( t )  = (ty + ( 1 -  t)x~)/llty + ( 1 -  t)xx II is an extreme point of both I1" II and I1" I1~ 

for t -> 1 (and t near enough to one) whenever IlYll= IlYll~ and Ilxo- yU< e. It 
follows that a x~ is the only isolated extreme point in the neighborhood required 

by (5). 

In particular, since the vector zy from (B) is in this neighborhood by (L), its 

choice is unique. That is, there is exactly one zy satisfying (B). Let x, and xA + w 

be the endpoints of a maximal line segment in the unit sphere of I1" I1~. Let 

0 < t - < l  be near enough zero so that y=t (xA+w)+(1- - t ) xA  satisfies 

II Y II ~ II Y II~. By the uniqueness of zy, we have z, = x~ + w. Therefore, by (M), the 
estimate in (6) is true. [] 

REMARKS. (1) If H" II is L U R  at yo with 1[ yoll = 1 and II Xo- you > 8, then [1. I1~ is 
L U R  at yo, because L U R  depends only on vectors near yo. 

(2) If II yoll = 1 and Ilxo- yoll> 8, then we can put a pimple at Yo on I1" I1~ whose 
unit ball is the union of the pimplies at xo on I1' [I and Yo on I1' II- That is, the 
"cones" for the two pimples are not visible to each other. 

(3) Something like L U R  at Xo is required to obtain the upper bound on 

Ilzy - xA U. Indeed, if Xo = el of the usual basis for II, then zy ~ [e,]~. 

§2. Infinite acne 

THEOREM 1. Each separable Banach space can be given an equivalent norm 
in which the only isometrics are +- identity. 
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(E) 
(F) 

A.1x. 

and 

PROOF. Let X be a separable Banach space and let (y,)o be a linearly 

independent set with dense linear span. We assume that the norm on X is locally 

uniformly convex, which we may by Section 0. The first step is to inductively pick 

a sequence (X.)o so that (x.) has dense linear span and 

(m) for n >0 ,  I l xo - x .  ll<-Ilxo+ x, ll/2 and 
(n) for m < n, [I x,. - x, II => ~, 

(c)  span(x,)7=o = span(y,)~'=o. 
Note that (C) will imply that (xi) has dense linear span. 

Start the induction by letting xo = yo/llyol[. Suppose Xo,...,x.-~ have been 
chosen. Let B be the span of these vectors and E be the span of B and y.. Pick 

z E E  so that Ilzll--1 and d i s t ( z , B ) = l .  Note that IlXo-zll----2 and pick 
x . = a x o + z / 3  so that Ilx.ll=l and a > 0 .  Convexity implies a>_-~. Also, 

1 = I[ axo + z /3  [I >= I a I - ~ implies a <-_ 4. Hence II Xo - x. tl -<- ~ and II Xo + x, II >= -~. 

Therefore Ilxo-x° II_-<llxo+ x. 11/2. The z/3 term in x. implies that for m < n, 

I l x . -  x . l l ~ .  
The next step is to construct pimples A, at x, inductively so that if II. II. is the 

pimple norm then: 

(D) -~11 'll----}l'll. (i.e., s__< A.), 

if 1 = l[ Y II > II y [1., then either I[ Y - x. II or II Y + x. II is less than -~, 
for every n there exist numbers a., b. > 0 so that if w is a vector so that 

and A ~lx. + w is a maximal line segment in the pimple then a. _-> 11 w 1[ => b., 

(G) 8b./9 > a.+l. 
All these conditions can be satisfied by making A. < 1 near enough to one by the 

Proposition. 
Now let [H" Ill be the equivalent norm obtained by adding the above pimples 

to the unit ball of [[. [[ (that is, [[1 x [[1 = sin[Ix [[,). We have ][[. [1 ~< 1[[. [[[ _-< [[. [[. 
Now we will show that (X, [[[. [[[) has only trivial isometries. Let T be an isometry 

for [[[. ][[. Since E = (__ A ~Jx.) is the set of isolated extreme points of [[[. ][[, T 

maps E onto itself. If n < m, then T cannot map A~x. to either _+ A2~xm. Since 

if w (respectively, w') is a vector so that A~lx, and h-~tx, + w (respectively, 

h~xm and h2~x,~ + w') are endpoints of a maximal line segment in the unit 

sphere of Ill" HI, then 
~ 8  t lU w III --~11w11>=80./9 > a,,, -->Uw'[[--- Ill w Ill. 

Thus T maps A~lx, into --- A~x. ,  and hence Tx. = +--x.. Replacing T by - T if 
necessary, we may assume Txo = xo. If Tx. = - x , ,  then 

III T(xo + x.)III -- III Xo- x. III ----Ilxo- x. II--< Ilxo + x= 11/2 = ~ Ill xo + x. III 
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contradicting the fact T is an isometry. Therefore T is the identity on the closed 

linear span of (x~) = X. [] 

REMARK. The equivalent norm II1' III can be made as near to LUR norm II" II 

as we like. Thus equivalent norms with trivial isometries are dense in the 

collection of equivalent norms since the equivalent LUR norms are dense. The 

standard construction of an equivalent LUR norm can be combined with 

Asplund averaging to show the LUR norms are dense. Both of these topics are 

in [4] and 15]. 

§3. Uncountable acne 

THEOREM 2. The non-separable Hilbert space 12(R) has an equivalent norm 

with only trivial isometries. 

PROOF. Let I1" II be the usual norm on 12(R) and let {e~ : a E [30,31]} be an 

orthonormal basis for this space. For t~ ~ [30,31] we define 

)t~ = COS Ot o, 

/z~ = s e c a  °=  A2 ~, 

j'e3o if a = 30, 
x,~ / 

l .cos89°e3o+cosl°e~ if or#30, 

y~ = ~t~x~. 

Consider the Ao-pimple at x~ (see Fig. 1). Observe that if II z II is different from 

the pimple norm of z, then the angle between z and one of + x~ is less than 

a°_- < 31 °. Also note that the vector w is so that y~ and y~ + w are the endpoints 

of a maximal line segment in the unit sphere of this pimple, if and only if 

II w II = tan a ° and the angle between w and x~ is 90 ° -  a °. 

Let II1" III be the equivalent norm obtained by adding all the pimples above to 

the unit ball of I1 II. if w is so that y~ and y~ + w are the endpoints of a maximal 

line segment in the unit sphere of II1" III, then III w Ill ~ II w II -- tan a °. If/3 # y are 
elements in (30,31]\{a} then 

w = tan a°(sin a°x~ + cos a°(e~ + e,)/V'2) 

is such a vector, and III w III --II w II-- tan ot °, since the angle between w and any 

-+ xa is greater than 31 °. Similarly, 

Ill y~o- yo III 2-- II y3o- yo II 2 = ~ o + / z 2 ~ -  2/Z~o/Z~ cosg9 ° 

~do + ~,~ + x~,30~o cos89 ° =  Ily~o + y° II 2= III y~0 + yo III 2. 
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Y, 

Y 1 
Fig. 1. 

Now let T be an i somet ry  for  II1" III- Since E = { +__ y~: ot E [30, 31]} is the 

collect ion of the isolated ex t r eme  points  of II1' III, T maps  E on to  itself. If  

30 =< a < / 3  _-__ 31 then  Ty~ ~ --4- y~ since there  is a line segment  with endpo in t  yz 

of length tan/3° in the unit sphere  of II1 III, but all those with endpo in t  y~ 

have  length =< tan a ° < tan/3 °. Hence  Tyo = - y~. Replac ing  T with - T if 

necessary,  we may  assume Ty3o = Y30. Now for  all a E [30, 31], Ty~ ~ - ya, since 

III y~o + yo III ~ III y3o- yo III. Thus T is the ident i ty on E and hence on /2(R) its 

closed l inear span. [ ]  

REMARKS. (1) The  " s a m e "  const ruct ion yields equivalent  norms  with trivial 

i sometr ies  for  Hi lber t  spaces with d imension  d and 2 =< d =< c = card(R).  

(2) If we had cen te red  the p imples  at e~ ra ther  than  x~, then the g roup  of 

isometr ies  would be { - 1 ,  1} R. 
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